South African Highway Capacity Research

Christo van As
Alex van Niekerk
Need for South African Highway Capacity Research?
Need for South African Highway Capacity Research?
Need for South African Highway Capacity Research

- Highway Capacity Manual
 - Often prescribed as minimum standard for capacity improvements
 - Capacity improvement required when
 - Level-of-service poorer than
 - LOS D in 30th Highest hour

- Therefore important to
 - Validate/Calibrate the HCM
 - For South African conditions
Recent Contributions

- Capacity Analysis of
 - Two-lane roads
 - Multilane highways & Freeways
 - Signalised intersections
South African National Roads Agency

Capacity Research

Two-Lane Highways
Two-Lane Highways Measures of Effectiveness

- HCM Measures of Effectiveness
 - Percent Time-Spent-Following (PTSF)
 - Average Travel Speed

- PTSF, however, difficult to observe
 - HCM Allows a surrogate measure
 - Percentage vehicles with headways < 3 s
 - Termed “Percentage followers”
Two-Lane Highways
Research Methodology

- Observations using
 - Double inductive loops

- Traffic loggers
 - New traffic loggers capability developed
 - Directly observes percentage followers
 - Can be used to directly observe LOS

- Observations on
 - 25 Different two-lane highways
Two-Lane Highways
Percentage Followers

- Observations indicate that HCM
 - Significantly overestimates Percentage followers

- It was therefore necessary to develop a new local two-lane model
Two-Lane Highways
HCM Model: Typical result

N4-21 Two-lane road, N4-5 Belfast - Machadodorp, 120 km/h
Westbound direction (Pretoria), Overtaking allowed
New Model
Two-Lane Highways
HCM Overestimation
Probably due to shoulder use
Appropriateness of Percentage Followers as a Measure of Effectiveness for establishing Level of Service
Percentage followers as a Measure of Effectiveness

HCM Model — —
HIM Model ______
Approximately 60/40 directional split

N4-32 Two-lane road, N4-5 Wonderfontein - Belfast, Km 25.4, 120 km/h
Westbound direction (Pretoria), Overtaking allowed
New Measure of Effectiveness

“Follower Density”

Approximately 60/40 directional split

Follower density (Veh/km/lane)

One-way traffic flow (PCU/hour)

N4 Two-lane, Wonderfontein - Belfast, Km 25.0, 120 km/h
Eastbound direction (Belfast), Overtaking allowed
New Measure of Effectiveness
“Follower Density”

- Follower Density
 - Percentage Followers x Traffic density
 - Units: Followers per km (per lane)

- Advantages
 - Gives greater weight to traffic flow
 - Automatically takes speed into account
New SANRAL Highway Traffic Model
HTM Highway Traffic Model

Vertical queue

Macroscopic “simulation” model based on catching-up and overtaking rates

Platoon (queue) length modelled every 20m over length of road
South African National Roads Agency

Microscopic Analysis of Highways and Freeways

Highway Traffic Model

Version 2006 (Beta)

Copyright © South African National Road Agency Ltd
Capacity Research
Multilane Highways & Freeways
Multilane Highways/Freeways Research Methodology

- **Observations using**
 - Double inductive loops
 - Newly developed traffic loggers
- **Observations on**
 - 20 Different freeways/highways
- **Scope of research**
 - Restricted to Basic Freeway Sections
 - Interchanges excluded
South African National Roads Agency

Multilane Highways/Freeways Speed/Flow Relationship

N1 Freeway, Strijdom Park, Section 20, Km 31.000, 120 km/h, Six lanes Southbound direction (Beyers Naude I/C), Flat gradient
Multilane Highways/Freeways
Per Lane Speed/Flow Relationship

N1 Freeway, Maraisburg, Section 20, Km 17.600, 120 km/h, Four lanes
Northbound direction (Maraisburg I/C), Flat gradient
Multilane Highways/Freeways
Lane Distribution

R21 Freeway, Kaalfontein, Km 8.800, 120 km/h, Four lanes
Northbound direction (Pretoria), Slight decline
Freeways
Typical observed capacities

<table>
<thead>
<tr>
<th>Description</th>
<th>Capacity range Pc/hour/lane</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCM</td>
<td>2300 2400</td>
</tr>
<tr>
<td>South Africa</td>
<td>1900 2300</td>
</tr>
</tbody>
</table>
Multilane Highways/Freeways
Percentage Followers?

- Multilane Highways/Freeways
- Modelled in terms of
 - Percentage followers

Advantage: Uniformity
 - Follower density used as a MOE for all types of highways:
 - Two-lane Highways
 - Multilane Highways/Freeways
Multilane Highways/Freeways
Percentage Followers/Flow

R21 Freeway, Kaalfontein, Km 8.800, 120 km/h, Four lanes
Northbound direction (Pretoria), Slight decline
Multilane Highways/Freeways
Speed/Percentage Followers

\[U = 116.8x(1-0.0320P - 0.0344P^2/(1-P)) \]

R21 Freeway, Kaalfontein, Km 8.800, 120 km/h, Four lanes Northbound direction (Pretoria), Slight decline
Signalised Intersections
Signalised Intersections
Delay Models

- HCM delay model found to
 - Overestimate delay significantly

- New model was therefore developed
 - University research (Pieter Pretorius)
 - Improve delay estimates significantly

- Study methodology
 - Simulation evaluations
Signalised Intersections
HCM Delay Model

Evaluation of the Highway Capacity Delay Model
Signalised Intersections
New Delay Model

Evaluation of the Modified Newell Delay Model
Conclusions
Conclusions

- Major differences found between USA & South Africa
- A need exists for a South African Highway Capacity Manual
- South Africa has the expertise
 - That can make a significant contribution
 - In the field of traffic engineering
South African National Roads Agency

Thank You

Images courtesy of SA Tourism