Bituminous Cold-Mix Technology and Pavement Design

Dr Fritz Jooste
Director
Modelling and Analysis Systems
Topics of this Presentation:

• Some history, project background
• Motivation of development approach (focus on structural design)
• Materials classification task details
• Structural capacity assessment details
• Conclusion
Some History…

- Recycling with emulsion and foam was done from the early 1970’s

- Initially fairly primitive & often applied to less highly trafficked roads by experienced designers
Some History…

First deep cold-in place recycling with Emulsion in 1994
Some History…

Prototype tested in South Africa - 1996

CIPR with Foam from 1996 onwards
Existing Cold-Mix Guidelines

• Emulsion materials

• Foamed bitumen materials
 ➢ TG2 Interim Guideline (2002)

Guidelines widely used, but need to

• Modernize & Improve
• Place foam and emulsion on equal footing
• Create a single, combined guideline
• Address need for paradigm shift in SA
Bituminous Cold-Mix Guidelines

• Project initiated in 2005 to address deficiencies in existing guidelines
• Focus on mix design and structural design elements
• Limited time-frame: short term deliverable
 ➢ Somewhat novel structural design approach adopted

Findings and methods will be incorporated into a larger, on-going pavement design development project (SANRAL sponsored)
Project Constraints

- Reasonable knowledge base of performance (long-term and accelerated loading), but …
- Not very detailed information, no fundamental material properties
- Current M-E design method has deficiencies

- Adopted a Heuristic or Knowledge-based pavement design approach
- Simplified design method, more emphasis on correct materials assessment, mix design and construction
Pavement Design Elements

Practitioner/Human Domain → Research/Software Domain → Practitioner/Human Domain
Pavement Design Elements

Traditional ME Research Approach: Focus mainly on model and software development. Determining inputs, implementation and knowledge transfer is often neglected.
Vision for Medium Term Outcome: Develop a practical design method that combines the best elements of current design methods, and incorporates best practice elements of mechanistic analysis, field testing and construction
Knowledge Based Approach

• Gather all available field performance data
• Distil best elements of mechanistic analysis
• Validate and refine for robustness
• Develop clear, strong linkage to field testing and specifications

To Date:
• 23 Field sites with construction, maintenance & performance info
• 7 HVS Sites (22 test sections) with construction & performance
The Design Process

Materials Classification

- FWD
- Test Pits
- Visuals
- DCP
- LAB

Capacity Assessment

- 200 mm BSM 1
- 130 mm C4
- > 200 mm G6
- CBR 7-15%

Specifications

Mix Design

- Shear Strength
- Durability
- Flexibility

Adopt aspects of Certainty Theory
Materials Classification Using Certainty Theory

<table>
<thead>
<tr>
<th>Available Information</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
<th>Class 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading</td>
<td>0.1</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Plasticity Index</td>
<td>0.1</td>
<td>0.35</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>DCP Penetration (mm/blow)</td>
<td>Refusal</td>
<td>1.5</td>
<td>3.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Rule certainty = 0.3</td>
<td>0.1</td>
<td>0.47</td>
<td>0.23</td>
<td>0.0</td>
</tr>
<tr>
<td>C(Hypoteseis</td>
<td>DCP Info)</td>
<td>0.1</td>
<td>0.59</td>
<td>0.30</td>
</tr>
<tr>
<td>Backcalc. Stiffness</td>
<td>0.1</td>
<td>0.59</td>
<td>0.30</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Systematic way of combining diverse types of evidence to reach a consistent, rational conclusion. Also teaches young engineers the key factors affecting materials.
The Design Process

Materials Classification

Capacity Assessment

Specifications

Mix Design
- Shear Strength
- Durability
- Flexibility

Materials Classification
- FWD
- Test Pits
- Visuals
- DCP
- LAB
Development Approach

- Range of Traffic Accommodated
- Rut situation, RQ situation
- Cracking situation
- Need for rehabilitation

System Performance Indicators

Design Parameter for Layer

- CBR 7-15%
- > 200 mm G6
- 130 mm C4
- 200 mm BSM 1

Reps to Failure ??
Reps to Failure ??
Reps to Failure ??
Development Approach

- Range of Traffic Accommodated
- Rut situation, RQ situation
- Cracking situation
- Need for rehabilitation

System Performance Indicators

System Behaviour Indicator ???

Area = Shear Potential “Fingerprint”

Octahedral Shear Strain

200 mm BSM 1
130 mm C4
> 200 mm G6

CBR 7-15%
Capacity Assessment Example

1. Material Classes
 - 150 mm BSM2
 - 150 mm C4
 - 150 mm G6
 - 150 mm G7
 - CBR 7-15%

2. Subgrade Class

3. Subgrade LTES
 - 97 MPa
 - 100 MPa

4. Adjust for region & subgrade cover

5. Assign modular ratio’s and Maximum Emods
 - MR = 4, $E_{\text{Max}} = 550$
 - MR = 3, $E_{\text{Max}} = 450$
 - MR = 1.8, $E_{\text{Max}} = 325$
Capacity Assessment Example

6. Determine Effective LTES for each layer

Octahedral Shear Strain

Vertical Compressive Strain on Subgrade = 237 microstrain

$\sum = 3.77$

550 MPa
450 MPa
175 MPa
97 MPa

Linear Elastic Theory
Handling Reliability

Category A Roads (95% Reliability)

Category B Roads (90% Reliability)
CONCLUSION

• Project is ongoing, 90% of technical work to be completed in March, 2008

• Efforts dedicated to Mix Design not covered, but this is a significant component (Project Leader: Prof Kim Jenkins)

• Aspects of the methodology to be incorporated in the broader revision of the SA Pavement design method
Thank you very much for your attention!